11가지 머신러닝 시계열 예측 모델 방법론 Time Series Forecasting

MONK

팔로워 1 팔로잉 17
  • 2021.04.02 07:30
  • 1047 조회

시계열 대회가 급증하여 머신러닝 시계열 예측 모델 방법론을 소개 합니다.

  1. Autoregression (AR)
  2. Moving Average (MA)
  3. Autoregressive Moving Average (ARMA)
  4. Autoregressive Integrated Moving Average (ARIMA)
  5. Seasonal Autoregressive Integrated Moving-Average (SARIMA)
  6. Seasonal Autoregressive Integrated Moving-Average with Exogenous Regressors (SARIMAX)
  7. Vector Autoregression (VAR)
  8. Vector Autoregression Moving-Average (VARMA)
  9. Vector Autoregression Moving-Average with Exogenous Regressors (VARMAX)
  10. Simple Exponential Smoothing (SES)
  11. Holt Winter’s Exponential Smoothing (HWES)


출처 :

https://machinelearningmastery.com/time-series-forecasting-methods-in-python-cheat-sheet/


14
댓글 0개