Corporate Success Probability Hackathon: Discover Future Successful Companies!

Dacon Hackathon | Algorithm | Begin | Tabular | Regression | Weighted MAE

  • moneyIcon Prize : DASCHOOL Pro Subscription
  • 953 Users Completed

 

[Private 3nd, 0.20693] Feature Engineering + XGBoost Regress

2025.05.31 18:45 574 Views language

처음 데이터 분석을 진행했을 때, 이상치가 거의 없었고 변수 간 상관관계도 대부분 0에 가까워 큰 의미가 없다고 판단했습니다. 따라서 다른 접근 방식보다는 파생변수 생성에 더 많은 노력을 기울였고, 이후 후진소거법(Backward Elimination)으로 feature selection을 진행했습니다. 다만, 일부 변수는 후진소거 과정에서 제거되었으나, 변수별 중요도를 확인해보니 오히려 성능에 긍정적인 영향을 주는 변수들이 있어 일부를 복원해 적용했습니다. 이러한 과정 덕분에 성능을 개선할 수 있었습니다.

마지막으로 Optuna를 활용해 하이퍼파라미터 튜닝을 진행해 전체 코드를 최적화했고, 이번 대회에서는 다소 운이 따랐던 것 같습니다.

Code