세그멘테이션중 경로문제

2022.08.23 15:06 1,348 조회

경로 문제인것 같은데 어떻게 하는게 좋을까요?

밑은 오류입니다

0it [00:00, ?it/s]

0it [00:00, ?it/s]

0it [00:00, ?it/s]

---------------------------------------------------------------------------

IndexError                                Traceback (most recent call last)

c:\Users\김뮤중\Desktop\psw\ui\try\datatq.py in <module>

    237 # torch.load(weights, map_location={'0':'dml'})0

    238

--> 239 data, label = test_set[0]

    240

    241 pred = model(torch.unsqueeze(data.to(device), dim = 0))>0.5


c:\Users\김선중\Desktop\psw\ui\try\datatq.py in __getitem__(self, i)

     65

     66         else:

---> 67             X_test = Image.open(self.X_test[i])

     68             X_test = self.transforms(X_test)

     69             Y_test = self.transforms(X_test)


IndexError: list index out of range



import matplotlib.pyplot as plt

from PIL import Image


path_to_annotation = \

    "C:/Users/김뮤중/Desktop/치아/masks1"

path_to_image = \

    "C:/Users/김뮤중/Desktop/치아/Images"


import glob

import torch

import numpy as np

import os

from torch.utils.data.dataset import Dataset

from PIL import Image



class min(Dataset):

    def __init__(self, path_to_img, path_to_anno,

                 train = True, transforms = None,

                 input_size = (512, 512)):

       

        self.images = sorted(glob.glob(path_to_img + "/*.jpg"))

        self.annotations = sorted(glob.glob(path_to_anno + "/*.jpg" ))

       

        self.X_train = self.images[:int(0.8*len(self.images))]

        self.X_test = self.images[int(0.8*len(self.images)):]

        self.Y_train = self.annotations[

            :int(0.8*len(self.annotations))]

        self.Y_test = self.annotations[

            int(0.8*len(self.annotations)):]

       

        self.train = train

        self.transforms = transforms

        self.input_size = input_size

   

    def __len__(self):

        if self.train:

            return len(self.X_train)

        else:

            return len(self.X_test)

       

    def preprocess_mask(self, mask):

        mask = mask.resize(self.input_size)

        mask = np.array(mask).astype(np.float32)

        mask[mask != 2.0] = 1.0

        mask[mask == 2.0] = 0.0

        mask = torch.tensor(mask)

       

        return mask


       

    def __getitem__(self, i):


        if self.train:

           

            X_train = Image.open(self.X_train[i])

            X_train = self.transforms(X_train)

            Y_train = Image.open(self.Y_train[i])

            Y_train = self.preprocess_mask(Y_train)

           

           

            return X_train, Y_train

       

        else:

            X_test = Image.open(self.X_test[i])

            X_test = self.transforms(X_test)

            Y_test = self.transforms(X_test)

            Y_test = self.preprocess_mask(Y_test)


import torch.nn as nn

import torch


class UNet(nn.Module):

    def __init__(self):

        super(UNet, self).__init__()



        # Contracting path

        self.enc1_1 = nn.Conv2d(3, 64, kernel_size = 3, padding = 1)

        self.enc1_2 = nn.Conv2d(64, 64, kernel_size = 3, padding = 1)

        self.pool1 = nn.MaxPool2d(kernel_size=2, stride = 2)


        self.enc2_1 = nn.Conv2d(64, 128, kernel_size = 3, padding = 1)

        self.enc2_2 = nn.Conv2d(128, 128, kernel_size = 3, padding = 1)

        self.pool2 = nn.MaxPool2d(kernel_size=2, stride = 2)


        self.enc3_1 = nn.Conv2d(128, 256, kernel_size = 3, padding = 1)

        self.enc3_2 = nn.Conv2d(256, 256, kernel_size = 3, padding = 1)

        self.pool3 = nn.MaxPool2d(kernel_size=2, stride = 2)


        self.enc4_1 = nn.Conv2d(256, 512, kernel_size = 3, padding = 1)

        self.enc4_2 = nn.Conv2d(512, 512, kernel_size = 3, padding = 1)

        self.pool4 = nn.MaxPool2d(kernel_size=2, stride = 2)


        self.enc5_1 = nn.Conv2d(512, 1024, kernel_size = 3, padding = 1)

        self.enc5_2 = nn.Conv2d(1024, 512, kernel_size = 3, padding = 1)


        # 디코더 은닉층

        self.upsample4 = nn.ConvTranspose2d(512, 512, 2, stride = 2)

        self.dec4_1 = nn.Conv2d(1024, 512, kernel_size = 3, padding = 1)

        self.dec4_2 = nn.Conv2d(512, 256, kernel_size = 3, padding = 1)


        self.upsample3 = nn.ConvTranspose2d(256, 256, 2, stride = 2)

        self.dec3_1 = nn.Conv2d(512, 256, kernel_size = 3, padding = 1)

        self.dec3_2 = nn.Conv2d(256, 128, kernel_size = 3, padding = 1)


        self.upsample2 = nn.ConvTranspose2d(128, 128, 2, stride = 2)

        self.dec2_1 = nn.Conv2d(256, 128, kernel_size = 3, padding = 1)

        self.dec2_2 = nn.Conv2d(128, 64, kernel_size = 3, padding = 1)


        self.upsample1 = nn.ConvTranspose2d(64, 64, 2, stride = 2)

        self.dec1_1 = nn.Conv2d(128, 64, kernel_size = 3, padding = 1)

        self.dec1_2 = nn.Conv2d(64, 64, kernel_size = 3, padding = 1)

        self.dec1_3 = nn.Conv2d(64, 1, kernel_size = 1)


        self.relu = nn.ReLU()


    def forward(self, x):

        x = self.enc1_1(x)

        x = self.relu(x)

        e1 = self.enc1_2(x)

        e1 = self.relu(e1)

        x = self.pool1(e1)


        x = self.enc2_1(x)

        x = self.relu(x)

        e2 = self.enc2_2(x)

        e2 = self.relu(e2)

        x = self.pool2(e2)


        x = self.enc3_1(x)

        x = self.relu(x)

        e3 = self.enc3_2(x)

        e3 = self.relu(e3)

        x = self.pool3(e3)

       

        x = self.enc4_1(x)

        x = self.relu(x)

        e4 = self.enc4_2(x)

        e4 = self.relu(e4)

        x = self.pool4(e4)

       

        x = self.enc5_1(x)

        x = self.relu(x)

        x = self.enc5_2(x)

        x = self.relu(x)

        x = self.upsample4(x)

       

        x = torch.cat([x,e4], dim = 1)

        x = self.dec4_1(x)

        x = self.relu(x)

        x = self.dec4_2(x)

        x = self.relu(x)

       

        x = self.upsample3(x)

        x = torch.cat([x,e3], dim = 1)

        x = self.dec3_1(x)

        x = self.relu(x)

        x = self.dec3_2(x)

        x = self.relu(x)

       

        x = self.upsample2(x)

        x = torch.cat([x,e2], dim = 1)

        x = self.dec2_1(x)

        x = self.relu(x)

        x = self.dec2_2(x)

        x = self.relu(x)

       

        x = self.upsample1(x)

        x = torch.cat([x,e1], dim = 1)

        x = self.dec1_1(x)

        x = self.relu(x)

        x = self.dec1_2(x)

        x = self.relu(x)

        x = self.dec1_3(x)


        x = torch.squeeze(x)


        return x

           

import tqdm

import torch

from torchvision.transforms import Compose

from torchvision.transforms import ToTensor, Resize

from torch.optim.adam import Adam

from torch.utils.data.dataloader import DataLoader


device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')


transforms = Compose([

    Resize((512, 512)),

    ToTensor()

])



train_set = min(path_to_img = path_to_image,

                 path_to_anno = path_to_annotation,

                 transforms = transforms)


test_set = min(path_to_img = path_to_image,

                path_to_anno = path_to_annotation,

                transforms = transforms,

                train = False)



train_loader = DataLoader(train_set, batch_size = 32, shuffle = False)

test_loader = DataLoader (test_set)


model = UNet().to(device)


learning_rate = 0.0001

optim = Adam(params = model.parameters(), lr = learning_rate)


for epoch in range(200):

    iterator = tqdm.tqdm(train_loader)

   

    for data, label in iterator:

        optim.zero_grad()

       

        preds = model(data.to(device))

       

        loss = nn.BCEWithLogitsLoss()(

            preds,

            label.type(torch.FloatTensor).to(device))

        loss.backward()

       

        optim.step()

       

        iterator.set_description(f"epoch{epoch+1} loss:{loss.item()}")

torch.save(model.state_dict(), "./UNet.pth")


import matplotlib.pyplot as plt


model.load_state_dict(torch.load("./UNet.pth",  map_location={'0':'dml'}))

# torch.load(weights, map_location={'0':'dml'})0


data, label = test_set[0]


pred = model(torch.unsqueeze(data.to(device), dim = 0))>0.5

# pred.save_segmentation_results(pred)