Burned Calories Prediction AI Hackathon

Algorithm | Tabular | Regression | Health | RMSE

  • moneyIcon Prize : 인증서
  • 712 Users Completed

 

[Private 2등- 0.1211] PolynomialFeatures + 선형회귀분석/ rint이용

2023.04.25 14:55 2,529 Views language

# 참고
PolynomialFeatures degree 2보다는 degree=3을 이용했을때 더욱 선형성을 잘 띄고 있음을 확인하였습니다.
 PolynomialFeatures degree=3 을 이용하였을때  LinearRegression  -> np rint 사용시 rmse가 기존 대비 0.1이상 감소, 
'Weight_Status','Height(Remainder_Inches)','Height(Feet)' 변수 제거후 SelectKBest 로 최적의 변수선택으로 0.12까지 성능이 좋아졌습니다!~
Boosting 모델보다 LinearRegression이 좋을때가 꽤 있다고 했는데 이 데이터에 해당되는거 같아요!~

Code
Login Required
0 / 1000
sunjuly
2023.04.25 15:25

Deleted Comment

구름저편
2023.04.27 08:02

두분다 정수화가 답이 었군요 ㅎㅎㅎ 
피처 선정한거라던지 3차로 한건 다 비슷한데 거기서 차이가 ㅎㅎㅎ

sunjuly
2023.04.27 12:19

반올림이 이번대회에서는 중요했던 거 같아요!ㅎㅎ